Panjaitan, Jhon Hendro (2016) Analisis segmentasi citra menggunakan algoritma k-means, mean shift, dan normalized cut. Bachelor Thesis thesis, Universitas Multimedia Nusantara.
Abstract
Segmentasi citra menggunakan algoritma K-Means, Mean Shift, dan Normalized Cut pada penelitian ini melakukan segmentasi citra berbasis clustering. Penelitian ini melakukan segmentasi pada tiga citra berwarna yaitu citra buah dengan jumlah variasi warna sedikit, citra buah dengan jumlah variasi warna banyak, dan citra konstruktif dengan posisi warna yang lebih banyak. Analisa tingkat keberhasilan segmentasi di ukur menggunakan histogram. Dari hasil pengujian yang dilakukan, algoritma K-Means lebih baik digunakan jika jumlah variasi pada gambar sedikit yaitu antara 4-6 warna, sehingga pengguna dapat menentukan langsung jumlah cluster yang diinginkan. Sementara itu, untuk algoritma Mean Shift lebih baik digunakan jika jumlah cluster yang digunakan tidak di ketahui. Semetara itu, segmentasi citra menggunakan Normalized Cut hasilnya kurang baik karena algoritma Normalized Cut melakukan segmentasi citra berdasarkan graph cut pada citra.
Item Type: | Thesis (Bachelor Thesis) |
---|---|
Subjects: | 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 000 Computer Science, Information and General Works 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 004 Computer Science, Data Processing, Hardware 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 005 Computer Programming > 005.2 Programming for Specific Computers, Algorithm, HTML, PHP, java, C++ |
Divisions: | Faculty of Engineering & Informatics > Computer Engineering |
Depositing User: | Administrator UMN Library |
Date Deposited: | 25 Jul 2017 06:41 |
Last Modified: | 29 Jun 2022 02:54 |
URI: | https://kc.umn.ac.id/id/eprint/1310 |
Actions (login required)
View Item |