Rinaldi, Aditia (2015) Implementasi fuzzy hashing untuk meningkatkan jumlah deteksi malware dengan metode signature based detection. Bachelor Thesis thesis, Universitas Multimedia Nusantara.
Abstract
Hash tradisional yang umum digunakan adalah MD5, SHA-1, dan SHA256. Dalam penelitian ini, keterbatasan hash tradisional dimana nilainya digunakan untuk membandingkan kesamaan file (fingerprinting), akan digantikan dengan fuzzy hashing sebagai salah satu metode hash yang berbeda dari hash tradisional karena dengan menggunakan fuzzy hash dapat mendeteksi kemiripan file dengan output berupa rentang nilai dari nol (tidak mirip) sampai dengan satu (sangat mirip) sehingga malware yang dapat terdeteksi dapat melebihi jumlah signature yang telah ada dalam database walau signature malware sebenarnya belum dibangun ke dalam database, terutama malware yang masih mirip atau varian dari malware yang telah terdapat dalam database dengan batas toleransi kemiripan minimal (threshold) tertentu. Implementasi fuzzy hashing menggunakan gabungan algoritma spamsum untuk menghasilkan nilai hash dan algoritma Levenshtein Distance termodifikasi untuk membandingkan kemiripan antara dua nilai fuzzy hash. Dari hasil uji coba, didapati bahwa implementasi fuzzy hashing pada signature malware dapat meningkatkan jumlah deteksi malware rata-rata sebesar 31,84% dan meningkatkan tingkat akurasi rata-rata sebesar 16,63% dari hash tradisional SHA256. Peningkatan jumlah deteksi dan akurasi optimal dapat dicapai pada threshold 50%. Kata kunci: accuracy, detection rate, fuzzy hasing, signature-based detection, signature malware.
Item Type: | Thesis (Bachelor Thesis) |
---|---|
Subjects: | 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 005 Computer Programming > 005.1 Programming, Programming Language 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 005 Computer Programming > 005.8 Computer Security, Data Security |
Divisions: | Faculty of Engineering & Informatics > Informatics |
Depositing User: | Administrator UMN Library |
Date Deposited: | 25 Jul 2017 08:15 |
Last Modified: | 21 Jan 2022 04:00 |
URI: | https://kc.umn.ac.id/id/eprint/1481 |
Actions (login required)
View Item |