Implementasi Algoritma Gaussian Naive Bayes pada Deteksi Sentimen Cyberbullying di Media Sosial Instagram

Colinkang, Robin (2020) Implementasi Algoritma Gaussian Naive Bayes pada Deteksi Sentimen Cyberbullying di Media Sosial Instagram. Bachelor Thesis thesis, Universitas Multimedia Nusantara.

[img] Text
HALAMAN_AWAL.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (488kB)
[img]
Preview
Text
DAFTAR_PUSTAKA.pdf
Available under License Creative Commons Attribution Share Alike.

Download (237kB) | Preview
[img]
Preview
Text
BAB_I.pdf
Available under License Creative Commons Attribution Share Alike.

Download (250kB) | Preview
[img]
Preview
Text
BAB_II.pdf
Available under License Creative Commons Attribution Share Alike.

Download (311kB) | Preview
[img]
Preview
Text
BAB_III.pdf
Available under License Creative Commons Attribution Share Alike.

Download (347kB) | Preview
[img] Text
BAB_IV.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (433kB)
[img]
Preview
Text
BAB_V.pdf
Available under License Creative Commons Attribution Share Alike.

Download (237kB) | Preview
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (2MB)

Abstract

membuat sistem penanganan kasus cyberbullying. Untuk membuat sistem tersebut, dibutuhkan proses pendeteksian konten berunsur cyberbullying dan dalam penelitian yang dilakukan akan digunakan metode Gaussian Naive Bayes. Gaussian Naive Bayes untuk klasifikasi komentar di media sosial Instagram untuk membedakan antara cyberbully atau bukan cyberbully. Pembeda penelitian ini dengan yang sudah dilakukan adalah adanya pendukung algoritma lain yaitu Ngram dan TF-IDF. Dalam analisis yang dilakukan sebelumnya, didapatkan akurasi sebesar 63,5% dengan menggunakan metode distribusi Gaussian. Pada penelitian lain yang dilakukan menghasilkan akurasi sebesar 75%. Hasil uji coba terbaik menghasilkan akurasi sebesar 76%.

Item Type: Thesis (Bachelor Thesis)
Keywords: Analisis sentimen, Cyberbullying, Gaussian Naive Bayes, TF-IDF, NGram
Subjects: 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 005 Computer Programming > 005.2 Programming for Specific Computers, Algorithm, HTML, PHP, java, C++
000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 006 Special Computer Methods > 006.7 Multimedia Systems, Blogs, Social Media, Web Application Frameworks
Divisions: Faculty of Engineering & Informatics > Informatics
SWORD Depositor: Administrator UMN Library
Depositing User: Administrator UMN Library
Date Deposited: 04 Dec 2020 14:51
Last Modified: 24 Aug 2023 00:09
URI: https://kc.umn.ac.id/id/eprint/14886

Actions (login required)

View Item View Item