Identifikasi mengenai Cyberbullying di Indonesia melalui Media Twitter dengan Metode Support Vector Machine dan Information Gain

Destitus S, Christevan (2020) Identifikasi mengenai Cyberbullying di Indonesia melalui Media Twitter dengan Metode Support Vector Machine dan Information Gain. Bachelor Thesis thesis, Universitas Multimedia Nusantara.

[img] Text
HALAMAN_AWAL.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (651kB)
[img]
Preview
Text
DAFTAR_PUSTAKA.pdf
Available under License Creative Commons Attribution Share Alike.

Download (131kB) | Preview
[img]
Preview
Text
BAB_I.pdf
Available under License Creative Commons Attribution Share Alike.

Download (312kB) | Preview
[img]
Preview
Text
BAB_II.pdf
Available under License Creative Commons Attribution Share Alike.

Download (401kB) | Preview
[img]
Preview
Text
BAB_III.pdf
Available under License Creative Commons Attribution Share Alike.

Download (472kB) | Preview
[img] Text
BAB_IV.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (1MB)
[img]
Preview
Text
BAB_V.pdf
Available under License Creative Commons Attribution Share Alike.

Download (135kB) | Preview

Abstract

Oleh : Christevan Destitus Cyberbullying adalah sebuah tindakan yang dilakukan untuk membuat orang lain tidak nyaman dengan kondisi keberadaannya. Cyberbullying sendiri terjadi biasanya karena dendam, motivated offender atau sekedar iseng. Cyberbullying dapat terjadi selama 24 jam sehari, 7 hari dalam seminggu salah satunya pada media twitter. Penelitian ini bertujuan untuk melakukan klarifikasi tweet pada media twitter menggunakan metode Support Vector Machine, klarifikasi sendiri bertujuan untuk mencari hyperplane pemisah antara kelas negatif dan positif. Penelitian ini juga menggunakan Information Gain untuk melakukan seleksi fitur yang relevan terhadap klarifikasi. Dalam tahap penelitian terdapat proses sistem yaitu text mining, text processing yang memiliki tahapan tokenizing, filtering, stemming, dan term weighting. Setelah itu dilakukan seleksi fitur oleh information gain yang menghitung nilai entropy setiap kata. Setelah itu melakukan klarifikasi berdasarkan fitur yang telah diseleksi dan hasil keluarannya berupa identifikasi apakah tweet tersebut termasuk bully atau bukan bully.

Item Type: Thesis (Bachelor Thesis)
Keywords: Cyberbullying, Klarifikasi, Support Vector Machine, Information Gain, Identifikasi
Subjects: 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 006 Special Computer Methods > 006.7 Multimedia Systems, Blogs, Social Media, Web Application Frameworks
Divisions: Faculty of Engineering & Informatics > Information System
SWORD Depositor: Administrator UMN Library
Depositing User: Administrator UMN Library
Date Deposited: 04 Dec 2020 09:06
Last Modified: 07 Aug 2023 06:53
URI: https://kc.umn.ac.id/id/eprint/15373

Actions (login required)

View Item View Item