Aplikasi spam filter dengan metode bayesian dan url filtering berbasis bloom filter

Ahmada, Irsyadul Halim (2014) Aplikasi spam filter dengan metode bayesian dan url filtering berbasis bloom filter. Bachelor Thesis thesis, Universitas Multimedia Nusantara.

[img] Text
HALAMAN AWAL.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (905kB)
[img]
Preview
Text
BAB I.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (839kB) | Preview
[img]
Preview
Text
BAB II.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB) | Preview
[img]
Preview
Text
BAB III.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB) | Preview
[img] Text
BAB IV.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[img]
Preview
Text
BAB V.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (761kB) | Preview
[img]
Preview
Text
DAFTAR PUSTAKA.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (769kB) | Preview
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (798kB)

Abstract

Spam Filter merupakan sebuah program atau aplikasi yang dapat menyaring email-email spam secara otomatis dan dapat diimplementasikan pada sisi server atau sisi client. Penelitian ini mengimplementasikan metode Bayesian Filtering dan metode URL Filtering pada sisi client, yaitu pada add-on Microsoft Outlook. Pertama email akan disaring menggunakan metode URL Filtering, kemudian jika email lolos maka akan disaring menggunakan metode Bayesian Filtering. Metode URL Filtering pada aplikasi ini telah dimodifikasi menggunakan Bloom filter untuk mempercepat proses lookup blacklist URL. Hasil penelitian menunjukan bahwa metode URL Filtering dan Bayesian Filtering telah berhasil diimplementasikan dan mendapatkan hasil akurasi 93% dalam menyaring email spam dan dengan diimplementasikan Bloom filter pada metode URL Filtering dapat mempercepat lookup 10 non-existing elemen seb

Item Type: Thesis (Bachelor Thesis)
Subjects: 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 005 Computer Programming > 005.8 Computer Security, Data Security
Divisions: Faculty of Engineering & Informatics > Informatics
Depositing User: Administrator UMN Library
Date Deposited: 31 Jul 2017 05:41
Last Modified: 21 Jun 2023 00:34
URI: https://kc.umn.ac.id/id/eprint/1634

Actions (login required)

View Item View Item