Wijaya, Steven (2021) Implementasi Metode Textrank dan Maximum Marginal Relevance (MMR) pada Peringkas Berita Difabel Otomatis. Bachelor Thesis thesis, Universitas Multimedia Nusantara.
Abstract
Minimnya liputan mengenai penyandang disabilitas, seolah menyembunyikan ketidaksetaraan yang penyandang disabilitas alami. Media massa sebagai pihak penyedia informasi pun merasa kesulitan karena dianggap kompleks dan membutuhkan kepekaan serta analisa yang mendalam. Diperlukan sebuah cara untuk membantu para jurnalis melakukan penelitian dengan lebih cepat. Ringkasan merupakan salah satu solusinya, akan tetapi meringkas secara manual membutuhkan banyak sekali waktu dan usaha. Oleh karena itu dibutuhkan peringkas berita yang bekerja secara otomatis. TextRank merupakan salah satu metode yang paling populer dan sering digunakan menjadi standar dalam peringkasan teks otomatis. Maximal Marginal Relevance (MMR) dapat mengurangi kemunculan kalimat redundant dan juga hasil ringkasannya dianggap mampu mendekati hasil ringkasan manusia. Penelitian dimulai dengan memilih berita difabel pada dataset IndoSum dan scraping pada website berita difabel online, text preprocessing, pemilihan model yang dapat merepresentasikan teks menjadi vector dengan baik, pemeringkatan menggunakan TextRank dan pemeringkatan ulang menggunakan Maximal Marginal Relevance. Hasil evaluasi terbaik didapatkan oleh model FastText pre-trained dengan nilai cosine similarity mencapai 0.98653 dan nilai f1-score, precision, recall mencapai 0.36528 pada dataset hasil scraping sedangkan pada dataset IndoSum mendapatkan nilai cosine similarity sebesar 0.97316 dengan nilai f1-score, precision, recall sebesar 0.36634.
Item Type: | Thesis (Bachelor Thesis) |
---|---|
Keywords: | FastText, Maximal Marginal Relevance, Penyandang Disabilitas, Ringkasan Berita, TextRank |
Subjects: | 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 005 Computer Programming > 005.2 Programming for Specific Computers, Algorithm, HTML, PHP, java, C++ |
Divisions: | Faculty of Engineering & Informatics > Informatics |
SWORD Depositor: | Administrator UMN Library |
Depositing User: | Administrator UMN Library |
Date Deposited: | 24 Aug 2021 11:39 |
Last Modified: | 25 Aug 2023 06:14 |
URI: | https://kc.umn.ac.id/id/eprint/16944 |
Actions (login required)
View Item |