Implementation of Self Training Classifier Using Logistic Regression in Classification of News Article Categories

Dewa Krisdaynata, Rangga (2022) Implementation of Self Training Classifier Using Logistic Regression in Classification of News Article Categories. Bachelor Thesis thesis, Universitas Multimedia Nusantara.

[img] Text
HALAMAN_AWAL.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB)
[img]
Preview
Text
DAFTAR_PUSTAKA.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB) | Preview
[img]
Preview
Text
BAB_I.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB) | Preview
[img]
Preview
Text
BAB_II.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB) | Preview
[img]
Preview
Text
BAB_III.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB) | Preview
[img] Text
BAB_IV.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB)
[img]
Preview
Text
BAB_V.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB) | Preview
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB)

Abstract

Media informasi atau berita telah merambah menjadi media daring sesuai dengan kebutuhan masyarakat milenial dan menjadi sarana yang paling efektif untuk menyampaikan informasi. Kategori berita dalam media daring pembagiannya dilakukan masih secara manual yang memakan waktu dan sumber daya komputasi. Penelitian ini membandingkan hasil performa metode klasifikasi berita logistic regression saja dan jika ditambah self training classifier. Proses klasifikasi dilakukan untuk berita pada merahputih.com. Kemudian untuk tambahan data pada penggunaan metode self training classifier, data diperoleh dari merdeka.com. Kategori berita yang diklasifikasi adalah hiburan, gaya hidup, kuliner, olahraga, tradisi dan travel. Implementasi logistic regression dengan menggunakan ekstrasi fitur TF-IDF dan self training classifier mendapatkan performa F1-Score sebesar 90.80% dan lebih kecil dari penggunaan logistic regression saja yang mendapatkan F1-Score sebesar 91.80%.

Item Type: Thesis (Bachelor Thesis)
Keywords: Logistic Regression, Self Training Classifier, TF-IDF
Subjects: 000 Computer Science, Information and General Works > 070 News Media, Journalism and Publishing
000 Computer Science, Information and General Works > 070 News Media, Journalism and Publishing > 070 News, mass media, journalism, and publishing
Divisions: Faculty of Engineering & Informatics > Informatics
SWORD Depositor: Administrator UMN Library
Depositing User: Administrator UMN Library
Date Deposited: 18 Nov 2022 00:57
Last Modified: 22 Aug 2023 07:05
URI: https://kc.umn.ac.id/id/eprint/19888

Actions (login required)

View Item View Item