Rancang Bangun Object Detection untuk Mendeteksi Rambu Lalulintas Menggunakan YOLOv3

Cantona Putra Islam, Farras (2022) Rancang Bangun Object Detection untuk Mendeteksi Rambu Lalulintas Menggunakan YOLOv3. Bachelor Thesis, Universitas Multimedia Nusantara.

[img]
Preview
Text
HALAMAN_AWAL.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB) | Preview
[img]
Preview
Text
DAFTAR_PUSTAKA.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (506kB) | Preview
[img]
Preview
Text
BAB_I.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB) | Preview
[img]
Preview
Text
BAB_II.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB) | Preview
[img]
Preview
Text
BAB_III.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB) | Preview
[img] Text
BAB_IV.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (5MB)
[img]
Preview
Text
BAB_V.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (358kB) | Preview
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (776kB)
[img]
Preview
Text
CC-BY-NC-SA 4.0.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (107kB) | Preview
Item Type: Thesis (Bachelor Thesis)
Creators: Cantona Putra Islam, Farras (00000016450)
Contributors:
  1. Christian Young, Julio
  2. Suryadibrata, Alethea
Subjects: 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 005 Computer Programming > 005.4 System Programming, Operating System, Computer Interface
Divisions: Faculty of Engineering & Informatics > Informatics
Date Deposited: 17 Jun 2022 01:15
URI: https://kc.umn.ac.id/id/eprint/21272

Actions (login required)

View Item View Item