Pengembangan aplikasi healthcor sebagai pendeteksi gejala gangguan jantung berbasis interpretasi data olimex ekg-emg shield

Kurniawan, Resky (2014) Pengembangan aplikasi healthcor sebagai pendeteksi gejala gangguan jantung berbasis interpretasi data olimex ekg-emg shield. Bachelor Thesis thesis, Universitas Multimedia Nusantara.

[img] Text
HALAMAN AWAL.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (909kB)
[img]
Preview
Text
BAB I.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (775kB) | Preview
[img]
Preview
Text
BAB II.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB) | Preview
[img]
Preview
Text
BAB III.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (965kB) | Preview
[img] Text
BAB IV.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)
[img]
Preview
Text
BAB V.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (764kB) | Preview
[img]
Preview
Text
DAFTAR PUSTAKA.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (848kB) | Preview
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)

Abstract

Di era modern ini, gaya hidup manusia sangat instan. Itu membuat kita sangat rentan terhadap penyakit, terutama berkaitan dengan gangguan jantung. Oleh sebab itu dalam penelitian ini, peneliti melakukan suatu perancangan sistem deteksi dini gangguan jantung yang akan memberikan hasil analisa sistem pakar dari sinyal EKG yang diterima melalui perangkat arduino dan Olimex-EKG-EMG shield. Sistem pakar terintegrasi dalam aplikasi HealthCor dimana aplikasi ini berhasil mendeteksi bentuk gelombang dan menghitung interval segmen sinyal EKG. Adapun keakuratan dari basis data sistem pakar sebesar 96% dan diagnosa yang diberikan sesuai pada 4 pasien dari total 4 pasien.

Item Type: Thesis (Bachelor Thesis)
Subjects: 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 005 Computer Programming > 005.5 Application / Software
600 Technology (Applied Sciences)
600 Technology (Applied Sciences) > 610 Medicine and Health
Divisions: Faculty of Engineering & Informatics > Computer Engineering
Depositing User: Administrator UMN Library
Date Deposited: 02 Aug 2017 07:27
Last Modified: 27 Jan 2023 02:03
URI: https://kc.umn.ac.id/id/eprint/1557

Actions (login required)

View Item View Item