Mudhiya Sadid, Septiyan (2020) Implementasi Algoritma Multinomial Naive Bayes untuk Spam Filtering pada User Feedback. Bachelor Thesis thesis, Universitas Multimedia Nusantara.
Text
HALAMAN_AWAL.pdf Restricted to Registered users only Available under License Creative Commons Attribution Share Alike. Download (1MB) |
||
|
Text
DAFTAR_PUSTAKA.pdf Available under License Creative Commons Attribution Share Alike. Download (287kB) | Preview |
|
|
Text
BAB_I.pdf Available under License Creative Commons Attribution Share Alike. Download (313kB) | Preview |
|
|
Text
BAB_II.pdf Available under License Creative Commons Attribution Share Alike. Download (428kB) | Preview |
|
|
Text
BAB_III.pdf Available under License Creative Commons Attribution Share Alike. Download (508kB) | Preview |
|
Text
BAB_IV.pdf Restricted to Registered users only Available under License Creative Commons Attribution Share Alike. Download (631kB) |
||
|
Text
BAB_V.pdf Available under License Creative Commons Attribution Share Alike. Download (231kB) | Preview |
|
Text
LAMPIRAN.pdf Restricted to Registered users only Available under License Creative Commons Attribution Share Alike. Download (695kB) |
Abstract
User feedback dapat memberikan informasi yang dapat membantu developer untuk melakukan perbaikan ataupun pengembangan pada software. Meski begitu, terdapat banyak feedback yang tergolong sebagai spam. Pada user feedback, spam lebih mengarah kepada inappropriate feedback, yaitu feedback yang sebenarnya bukanlah merupakan ulasan ataupun saran namun hanya komentar jahil atau sekadar pertanyaan. Membaca dan memilih feedback yang berguna secara manual akan memakan banyak waktu dan tenaga. Oleh karena itu, sistem spam filtering menggunakan Multinomial Naive Bayes yang mengimplementasikan TF/IDF dibuat agar dapat membantu untuk mengurangi spam yang terdapat pada feedback. Pada klasifikasi teks, algoritma Multinomial Naive Bayes terbukti unggul dalam hal kecepatan dan memiliki performa yang bagus. Dengan TF/IDF, kata yang sangat sering muncul dalam banyak dokumen akan berkurang bobotnya sehingga dapat membantu dalam meningkatkan performa pada dataset yang tidak seimbang. Penelitian ini bertujuan mengimplementasikan algoritma multinomial naive bayes untuk spam filtering pada user feedback serta mengetahui akurasi dan performa dari model yang dibuat. Hasil uji coba yang memiliki performa terbaik pada penelitian ini diperoleh ketika menggunakan metode upsampling serta typo corrector dengan perbandingan train dan test set sebesar 70:30, yaitu akurasi sebesar 89,25%, precision sebesar 45%, recall sebesar 56%, dan F1-Score 50%.
Item Type: | Thesis (Bachelor Thesis) |
---|---|
Keywords: | Spam filtering, Multinomial Naïve Bayes, User Feedback, TF/IDF, Requirement Engineering |
Subjects: | 000 Computer Science, Information and General Works > 000 Computer Science, Knowledge and Systems > 005 Computer Programming > 005.2 Programming for Specific Computers, Algorithm, HTML, PHP, java, C++ |
Divisions: | Faculty of Engineering & Informatics > Informatics |
SWORD Depositor: | Administrator UMN Library |
Depositing User: | Administrator UMN Library |
Date Deposited: | 04 Dec 2020 14:44 |
Last Modified: | 18 Aug 2023 08:08 |
URI: | https://kc.umn.ac.id/id/eprint/14897 |
Actions (login required)
View Item |